anonymous
  • anonymous
What is the determinant of the matrix 'X' as a function of the determinants of the matrices 'A' and 'B', with A^-1* X = B^-1 ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
what if we multiplied both sides by A,. that would certainly leave only the X on teh LHS
anonymous
  • anonymous
Left-multiplying both sides of the matrix by A, we obtain:\[X=AB^{-1}\]A property of determinants tells us that:\[detX=\det(AB^{-1})=\det(A)\det(B^{-1})\]Recall that A and B must both be invertible matrices for this to hold. Additionally, this implies that the determinant of X will never be zero since the determinants of A and B must be non-zero if they are invertible.

Looking for something else?

Not the answer you are looking for? Search for more explanations.