anonymous
  • anonymous
The length of the altitude drawn to the hypotenuse of a right triangle is 8. What could be the possible lengths of the segments of the hypotenuse? 4 and 4 4 and 8 4 and 16 4 and 64
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Directrix
  • Directrix
You need the theorem: If an altitude is drawn to the hypotenuse of a right triangle, the altitude is the geometric mean between the lengths of the segments of the hypotenuse. That means that 8 = √(x*y) where x and y are the segments of the hypotenuse. Look at the answer options for two numbers the square root of whose product is 8, i.e., the numbers multiply to 64. 4 and 16 ---> Answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.