anonymous
  • anonymous
The remedy is experience.. And I don't have any.. Help please ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
PaxPolaris
  • PaxPolaris
First find the length of BD using △BCD
PaxPolaris
  • PaxPolaris
using Pythagorean theorem
PaxPolaris
  • PaxPolaris
\[BD^2=18^2+24^2\]\[\therefore BD=\sqrt{18^2+24^2}\] (you can remove the common factor of 18 and 24 out to make the math easier)\[\implies BD = 6\sqrt{3^2+4^2}=6\sqrt{25}=\Large 30 ft.\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thanks :)
PaxPolaris
  • PaxPolaris
Then to find AD you need to know trigonometry ....OR at-least the ratios of the sides of 30-60-90 triangles.
anonymous
  • anonymous
Do what ?
PaxPolaris
  • PaxPolaris
|dw:1333147962445:dw| In 30-60-90 triangles the ratios of the sides is always \[\Large 1:\sqrt3:2\]
anonymous
  • anonymous
Cool... Now what do I do with that ?
PaxPolaris
  • PaxPolaris
△ABD is a 30-60-90 triangle.... if you know one side(BD) you can find the others
anonymous
  • anonymous
so do i do 30*the sqr rt of 3 ?
anonymous
  • anonymous
That would be 52 (rounded up)
PaxPolaris
  • PaxPolaris
AD is smaller than BD... ...If the side opposite the 30deg (smallest) angle is length 1(smallest side) ..........then the side opposite the 60deg angle is sqrt3
anonymous
  • anonymous
I'm confused again..
PaxPolaris
  • PaxPolaris
\[\Large {BD \over AD} = \frac {\sqrt3} 1\]
anonymous
  • anonymous
so would you do 30*the square root of 3 divided by 2 then ? That comes out to be 26 (rounded up)
anonymous
  • anonymous
Dude , I'm so confused . Can you just give me the answer ? Lol . I'll ask my teacher about all this crap on Monday .
PaxPolaris
  • PaxPolaris
\[{ 30 \over AD} = {\sqrt3 \over 1}\] \[AD = {30 \over \sqrt 3} = \Large 10\sqrt3\ ft.\]
PaxPolaris
  • PaxPolaris
17ish
anonymous
  • anonymous
17ish ?
anonymous
  • anonymous
17.3 (3sf)
anonymous
  • anonymous
thanks (what does 3sf mean ?)
anonymous
  • anonymous
3 significant figures (1, 7 and 3)
PaxPolaris
  • PaxPolaris
ignore significant figures if you don't know what it means... by seventeen-ish, I meant 10*sqrt3 is around 17
anonymous
  • anonymous
ok. 17.3 (1dp / 1 decimal point)

Looking for something else?

Not the answer you are looking for? Search for more explanations.