anonymous
  • anonymous
Simplify the given expression. square root negative 6 open parentheses 2 plus square root of negative 8
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
please write like this 1/x+4*2-3/ ... USE / * - + instead of words... I don't understand it at all :S
anonymous
  • anonymous
can you rewrite it ?
anonymous
  • anonymous
\[\sqrt{-6}\left( 2 + \sqrt{-8} \right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
6i(2+8i) =12i+48i^2 =12i-48
anonymous
  • anonymous
\[\LARGE \sqrt{-6}\cdot (2+\sqrt{-8})=i6\cdot(2+i8)=12i+48i^2\] since \[\LARGE i^2=-1 \] \[\LARGE -1\cdot 48+12i\]
anonymous
  • anonymous
complex numbers.
anonymous
  • anonymous
none of those are my options though
anonymous
  • anonymous
what are your options? post them...
anonymous
  • anonymous
|dw:1333171803811:dw|
anonymous
  • anonymous
\[\sqrt{-6}(2+\sqrt{-8)} = \sqrt{6}.\sqrt{-1}(2=\sqrt{8}.\sqrt{-1} ->\sqrt{6}i(2+\sqrt{8i} -> 2\sqrt{6i} +\sqrt{48}i->2\sqrt{6}i+\sqrt{48}i²-> 2\sqrt{6}i-4\sqrt{3}\]
anonymous
  • anonymous
\[2\sqrt{6} + 4\sqrt{3} this is one of them
anonymous
  • anonymous
another one is the same but the 2 is negative
anonymous
  • anonymous
\[-4\sqrt{3} + 2i \sqrt{6}\]
anonymous
  • anonymous
the last one is the same up 4 is negative
anonymous
  • anonymous
\[\sqrt{6}i(2+\sqrt{8}i) -> 2\sqrt{6}i+ \sqrt{48}i² -> 2\sqrt{6}-4\sqrt{3}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.