inkyvoyd
  • inkyvoyd
What's the best way to prove that 1+1 is two?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
inkyvoyd
  • inkyvoyd
No, it's not a very good question. Yes, there are very good answers.
anonymous
  • anonymous
I thought our whole Number system is axiomatic :/
Mertsj
  • Mertsj
Get some toothpicks. Put one in each hand. Count them.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

experimentX
  • experimentX
http://answers.yahoo.com/question/index?qid=20080622015630AABM5dF
anonymous
  • anonymous
The proof starts from the Peano Postulates, which define the natural numbers N. N is the smallest set satisfying these postulates: P1. 1 is in N. P2. If x is in N, then its "successor" x' is in N. P3. There is no x such that x' = 1. P4. If x isn't 1, then there is a y in N such that y' = x. P5. If S is a subset of N, 1 is in S, and the implication (x in S => x' in S) holds, then S = N. Then you have to define addition recursively: Def: Let a and b be in N. If b = 1, then define a + b = a' (using P1 and P2). If b isn't 1, then let c' = b, with c in N (using P4), and define a + b = (a + c)'. Then you have to define 2: Def: 2 = 1' 2 is in N by P1, P2, and the definition of 2. Theorem: 1 + 1 = 2 Proof: Use the first part of the definition of + with a = b = 1. Then 1 + 1 = 1' = 2 Q.E.D. Note: There is an alternate formulation of the Peano Postulates which replaces 1 with 0 in P1, P3, P4, and P5. Then you have to change the definition of addition to this: Def: Let a and b be in N. If b = 0, then define a + b = a. If b isn't 0, then let c' = b, with c in N, and define a + b = (a + c)'. You also have to define 1 = 0', and 2 = 1'. Then the proof of the Theorem above is a little different: Proof: Use the second part of the definition of + first: 1 + 1 = (1 + 0)' Now use the first part of the definition of + on the sum in parentheses: 1 + 1 = (1)' = 1' = 2 Q.E.D. =)
ILovePuppiesLol
  • ILovePuppiesLol
@ganeshie8 guess i found it

Looking for something else?

Not the answer you are looking for? Search for more explanations.