anonymous
  • anonymous
A grain silo is shown below. What is the volume of grain that could completely fill this silo rounded to the nearest whole number? Use for pi. 34,597 ft3 11,532 ft3 35,669 ft3 2,146 ft3
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
Mertsj
  • Mertsj
\[\pi (8)^2(172)+\frac{1}{2}(\frac{4}{3})\pi (8)^3\]
Mertsj
  • Mertsj
What are you supposed to use for pi?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1333225485506:dw|
anonymous
  • anonymous
my answers are close to 34,597 and 35,669 (the answers above)
anonymous
  • anonymous
The silo volume is equal to the sum of the volume of a hemisphere and that of a cylinder.\[\frac{\frac{4}{3}\pi r^3}{2}+\pi r^2h=\frac{1}{3} \pi r^2 (3 h+2 r)\text{=}35655\]where r=8 and h=173
anonymous
  • anonymous
sweet i was close then thanks
Mertsj
  • Mertsj
35669 then.
Directrix
  • Directrix
35,669 ft3 ----------- The silo is a right circular cylinder and a hemisphere. Volume of Cylinder =========== V = pi r^2 h V = pi (8)^2 (172) V =11 008 pi Volume of Hemisphere ============= Volume = (1/2) (4/3) pi (r)^3 Volume = (2/3) pi (8)^3 Volume = 1024 / 3 pi Volume of Silo = 11 008 pi +( 1024 /3) pi = (11 008 + 341 1/3) pi = 35 669.334 approx

Looking for something else?

Not the answer you are looking for? Search for more explanations.