anonymous
  • anonymous
Consider the paraboloid z=f(x,y)= 4+x^2+3y^2 . Beginning at (3,4,61) on the surface, find the path in the xy-plane that points in the direction of steepest descent on the surface.
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Take the gradient?
anonymous
  • anonymous
Gradient = <2x, 6y> Your vector: 6i + 24j @AccessDenied help! I thought I remembered all of this :-(
anonymous
  • anonymous
When they say "path" are they looking for the equation of the line or do they want the vector?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AccessDenied
  • AccessDenied
i was imagining that the path on xy-plane was something like this with respect to an actual function: |dw:1333233857061:dw| that's just from intuition tho, i havent actually gotten into this part of calc -- i was just curious to see the answer. D:
anonymous
  • anonymous
Here's what I have so far: 1. Take the gradient (i component is partial derivative with respect to x, j component is partial derivative with respect to y.) Gradient: <2x,6y> 2. Plug your point in to get your vector: <2(3), 6(4)> = <6, 24> = 6i +24j 3. Now think of your vector as a slope (rise/run) 24j is the rise. 6i is the run. Slope = 24/6 = 4 4. You have a point in the xy-plane: (3,4). You have a slope: m=4 Now you can find the eqn of your line. First using y=mx+b, solve for b. 4=4(3) +b b=-8 y=4x-8 That's what I'm thinking, but I'm curious to see what other have to say.
AccessDenied
  • AccessDenied
the explanations online for similar problems are just beyond me, so I can't really tell you anything helpful. I've done a brief study on gradient, but nothing like this! :P
anonymous
  • anonymous
Path of "greatest change" is just the gradient of a function with with two independent variables. It will be a vector in the xy-plane.
anonymous
  • anonymous
http://mathforum.org/mathimages/index.php/Gradients_and_Directional_Derivatives
anonymous
  • anonymous
|dw:1333234900760:dw| that's kinda what it looks like
anonymous
  • anonymous
thank you for all for your help!
anonymous
  • anonymous
AWESOME!!!! http://mathhelpforum.com/calculus/77210-directional-derivative-direction-steepest-descent.html This is the PERFECT example for you :-D
anonymous
  • anonymous
I'm probably more trouble than help on this problem. Duf is the directional derivative. In R3, you end up computing the actual slope (just a number) at that point. Basically, when you look at a contour map of your function, that slope will be perpendicular to the contour at that point. Hence, direction of greatest change. As far as "path of greatest descent," I'm still thinking that they want the equation of a line. In this case, it doesn't matter if you have -grad f, or +grad f. You'll still end up with the same line equation.

Looking for something else?

Not the answer you are looking for? Search for more explanations.