anonymous
  • anonymous
Find dy/dx by implicit differentiation: e^(x/y) = x-y
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
.Sam.
  • .Sam.
e^(x/y) = x-y e^(xy^(-1)) = x-y differentiate, \[[-\frac{x}{y^2}\frac{dy}{dx}+\frac{1}{y}]e^{xy^{-1}}=1-\frac{dy}{dx}\] \[\frac{dy}{dx}(1-\frac{xe^{xy^{-1}}}{y^2})=1-\frac{e^{xy^{-1}}}{y}\] \[\huge \frac{dy}{dx}=\frac{1-\frac{e^{xy^{-1}}}{y}}{(1-\frac{xe^{xy^{-1}}}{y^2})}\]
.Sam.
  • .Sam.
multiply y^2 to top and bottom and simplify
anonymous
  • anonymous
\[e^{\frac{x}{y}}\times \frac{y-xy'}{y^2}=1-y'\] is a start

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
or use .sam. method either way
.Sam.
  • .Sam.
\[\text{Final result}\] \[\frac{dy}{dx}=\frac{y \left(e^{x/y}-y\right)}{x e^{x/y}-y^2}\]
anonymous
  • anonymous
@calyne is it clear that the right hand side becomes \[1-y'\]?
anonymous
  • anonymous
yeah thanks guys
anonymous
  • anonymous
wait sam how did you get from \[[−xy2dydx+1y]exy−1=1−dydx dydx(1−xexy−1y2)=1−exy−1y\]
anonymous
  • anonymous
wait flutter i mean how did you get from the first equation to the second in your first post
.Sam.
  • .Sam.
There's 2 steps there, 1)multiply e^{xy^{-1}} into [−xy2dydx+1y] 2)moving the dy/dx from RHS to LHS then factor dy/dx
.Sam.
  • .Sam.
\[[-\frac{x}{y^2}\frac{dy}{dx}+\frac{1}{y}]e^{xy^{-1}}=1-\frac{dy}{dx}\] \[-\frac{xe^{xy^{-1}}}{y^2}\frac{dy}{dx}+\frac{e^{xy^{-1}}}{y}+\frac{dy}{dx}=1\] \[\frac{dy}{dx}(1-\frac{xe^{xy^{-1}}}{y^2})=1-\frac{e^{xy^{-1}}}{y}\] \[\huge \frac{dy}{dx}=\frac{1-\frac{e^{xy^{-1}}}{y}}{(1-\frac{xe^{xy^{-1}}}{y^2})}\]
anonymous
  • anonymous
can you show me how to equate that to [ y * ( y - e^(x/y) ) ] / [ y^2 - xe^(x/y) ] ??
.Sam.
  • .Sam.
i got to go , bump this up for others to solve
anonymous
  • anonymous
if we can start with \[e^{\frac{x}{y}}\times \frac{y-xy'}{y^2}=1-y'\] we can do it step by step, it is essentially algebra from here on in
anonymous
  • anonymous
i would a) multiply both sides by \(y^2\) b) put everything with a \(y'\) on one side and everything else on the other c) factor \(y'\) out of the terms d) divide
anonymous
  • anonymous
\[e^{\frac{x}{y}}\times \frac{y-xy'}{y^2}=1-y'\] \[e^{\frac{x}{y}}(y-xy')=y^2-y^2y'\] \[ye^{\frac{x}{y}}-xe^{\frac{x}{y}}y'=y^2-y^2y'\] \[y^2y'-xe^{\frac{x}{y}}y'=y^2-ye^{\frac{x}{y}}\] \[y'(y^2-xe^{\frac{x}{y}})=y^2-ye^{\frac{x}{y}}\]
anonymous
  • anonymous
check my algebra because it is hard to write all this here, but that is the idea
anonymous
  • anonymous
last step is to divide and you are done!

Looking for something else?

Not the answer you are looking for? Search for more explanations.