anonymous
  • anonymous
Prove that if z1 +z2 +z3 =0 and |z1|=|z2|=|z3| =1, then this points are the vertices of an equilateral triangle inscribed in the unit circle |z|=1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
|dw:1333304079445:dw|
experimentX
  • experimentX
but i don't think that circle of radius will be 1
anonymous
  • anonymous
thats what book says

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

experimentX
  • experimentX
this will be an equilateral triangle .. for sure, since all vertices are equal and summation zero implies it's a triangle ... but inscribed in circle of unit radius??
anonymous
  • anonymous
|dw:1333304890540:dw|
experimentX
  • experimentX
thats not possible since x1x2x3 are all one ....
experimentX
  • experimentX
|dw:1333305087208:dw|
experimentX
  • experimentX
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCsQFjAB&url=http%3A%2F%2Fwww.csie.ntu.edu.tw%2F~b89089%2Fbook%2FApostol%2Fch1.pdf&ei=gJ94T6nlM4XyrQf5k5CXDQ&usg=AFQjCNFfPqfXjDUPjN8cyezXPWd1rooVRA&sig2=wXn6nReac4_6g45bUHfqKw
experimentX
  • experimentX
Oo ... I misinterpreted the question
experimentX
  • experimentX
|dw:1333305382925:dw|
experimentX
  • experimentX
it;s quite easy after that
anonymous
  • anonymous
thx

Looking for something else?

Not the answer you are looking for? Search for more explanations.