anonymous
  • anonymous
Find the length and width (with W < or equal to L ) of the rectangle with perimeter 72 that has maximum area, and then find the maximum area.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
2W+2L=72 W+L=36 W=36-L A=LW=L(36-L) you want to find the vertex of the parabola A=L(36-L) the x-coordinate is your length, y-coordinate is the maximum area
campbell_st
  • campbell_st
the easy way is to use a spreadsheet the sum of length and width is 36 so start with a spreadsheet with columns Width Length Area 1 35 35 2 34 78 3 33 99 repeat the process graph the points and you'll see a concave down parabola. the max area occurs when l = w = 18 or you can use differential calculus
anonymous
  • anonymous
Thank you! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.