anonymous
  • anonymous
Find the limit of it exists lim x-> (x^3)ln(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
As x goes to what?
anonymous
  • anonymous
a) 0 b)1 c) 2 d) 3 e) -INF
anonymous
  • anonymous
x->0+ sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yes, but you can break the problem up into 2 separate limits. \[\lim_{x \rightarrow 0+}x^3 * \lim_{x \rightarrow 0+}\ln(x)=0*-\infty\], so no matter the limit of ln(x), x^3lnx approaches 0 as x->0+
anonymous
  • anonymous
it never reaches zero as we get infinitely closer to x=0 from the right (although x^3lnx=0 when x=1, but irrelevant), but the limit is still 0 from the right.
anonymous
  • anonymous
Wasn't thinking, yes you are correct.

Looking for something else?

Not the answer you are looking for? Search for more explanations.