At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

i guess you know how to find the derivate of x ... so just find for sqrt(x)

f(x) = \[\sqrt{x} -x \]

where you take the limit as h-->0

seems he wants the increment thingy...the limits

@experimentX how do you get this sqrt(x+dx) = sqrt(x)*sqrt(1+dx/x)

hehe

yes I want the "increment thingy"<<

@perl .. take x common!

huh?

|dw:1333351654824:dw|
plug it in to that...

(x+dx)^1/2 = x^1/2 + ...

ohhhh

@experimentX
(x+dx)^1/2 = x^1/2 ( 1 + dx/x ) ^1/2

dx is supposed to be del x ... or better h

|dw:1333351804706:dw|
do some algebra here....

ok... too many cooks... i'll quit.

yeah I know what the formula is, but the algebra is giving me trouble

yes .. since dx^higer would be very less ... it would seem better to take linear term.

then you factored out sqrt x

yes .. and that would cancel out .. sqrt(x) leaving dx/(2sqrt(x)

omg wow finally got it. simple algebra really. lmfao............

congrats

|dw:1333354174909:dw|