anonymous
  • anonymous
How can I use Euler's generalization of Fermat's little theorem to compute\[18!\text{ }(\text{mod }437)?\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hmm \(437=23\times 19\) so my guess is to first find the remainders mod 19 and 23
anonymous
  • anonymous
\[18!\equiv -1(19) \] by wilson's which says \((n-1)!\equiv -1(n)\) now what to do with the 23?
anonymous
  • anonymous
guess didn't use euler so maybe this is not the right approach, but i think you can do something similar with the 23 that is compute \(22!\equiv -1(23)\) and then rewrite \(22!=22\times 21\times 20\times 19\times 18!\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
That's an interesting approach. Thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.