anonymous
  • anonymous
Find y'' by implicit differentiation: x^3 + y^3 = 1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
precal
  • precal
|dw:1333397126713:dw|
precal
  • precal
|dw:1333397156412:dw|
precal
  • precal
|dw:1333397188197:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

precal
  • precal
|dw:1333397226975:dw|
precal
  • precal
ok now take the derivative again. Don't forget to use this statement in again for y'
anonymous
  • anonymous
can you help me precal please
precal
  • precal
http://www.wolframalpha.com/input/?i=find+the+derivative+of+y%3D%28-x%5E2%29%2Fy%5E2
precal
  • precal
Here is the final solution from wolfram alpha.
anonymous
  • anonymous
\[x^3 + y^3 = 1\] \[3x^2+3y^2y'=0\] \[y'=-\frac{x^2}{y^2}\]
anonymous
  • anonymous
\[y''=\frac{2xy^2-2x^2yy'}{y^4}\] by the quotient rule
anonymous
  • anonymous
replace \(y'\) by \(-\frac{x^2}{y^2}\) in the above, do some algebra and get the solution
anonymous
  • anonymous
got to that but i'm stuck anyway
anonymous
  • anonymous
\[y''=\frac{2xy^2-2x^2y\times \frac{x^2}{y^2}}{y^4}\]
anonymous
  • anonymous
multiply top and bottom by \(y^2)\] so clear the fraction then cancel some y's
anonymous
  • anonymous
typo there i lost the minus sign, should be \[y''=\frac{2xy^2+2x^2y\times \frac{x^2}{y^2}}{y^4}\]
anonymous
  • anonymous
\[y''=\frac{2xy^4+2x^4y}{y^6}\] \[y''=\frac{2xy^3+2x^4}{y^5}\] \[y''=\frac{2x(y^3+x^3)}{y^5}\] \[y''=\frac{2x}{y^5}\] since \(x^36y^3=1\)
anonymous
  • anonymous
rather since \(x^3+y^3=1\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.