anonymous
  • anonymous
What is the length of the conjugate axis? (x-2)^2/(36) - (y+1)^2/(64) =1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
had to chk to be sure; the number in the denom of your - term; sqrt it, what do we get?
amistre64
  • amistre64
if they are going to call them a transverse and a conjugate axis they might as well define the generic as: \[\frac{x^2}{t^2}-\frac{y^2}{c^2}=1\] where the c^2 is always under the - part
anonymous
  • anonymous
so you're referring to C^2 which happens to be 64 in the equation

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
?
anonymous
  • anonymous
2 * 8 = 16

Looking for something else?

Not the answer you are looking for? Search for more explanations.