anonymous
  • anonymous
Five consecutive odd integers are such that the square root of the middle term is 16 less than the smallest term. What is the second smallest of these five integers? 47 23 62 21 79
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
Let x be the middle term of the 5 terms, the other terms are x-4, x-2, x+2 and x+4 the smallest term is x-4 From ''square root of the middle term is 16 less than the smallest term.'' we can get \[\sqrt{x} = (x-4)-16\] Square both sides and solve for x \[\sqrt{x}^2 =( x-20)^2\]\[x =( x^2-40x +400)\]\[0=( x^2-41x +400)\]x =25 or x=16 (rejected) The second smallest term = middle term - 2 = 25-2 Can you work it out?
anonymous
  • anonymous
Yes its 23, thank you!
Callisto
  • Callisto
Welcome, do you know how to do this type of question next time?

Looking for something else?

Not the answer you are looking for? Search for more explanations.