anonymous
  • anonymous
Why is the following situation impossible? A uniform beam of mass mb = 3.00 kg and length script l = 1.00 m supports blocks with masses m1 = 5.00 kg and m2 = 15.0 kg at two positions as shown in the figure below. The beam rests on two triangular blocks, with point P a distance d = 0.300 m to the right of the center of gravity of the beam. The position of the object of mass m2 is adjusted along the length of the beam until the normal force on the beam at O is zero. http://www.webassign.net/serpse8/12-p-002.gif
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Let's sum the torques about P. \[\sum \tau_P = 0 \rightarrow m_b \cdot d - m_2 \cdot x + N_O \cdot {l \over 2} + m_1 \cdot {l \over 2}\]Noting that x is limited to be no greater than 0.2m. If this cannot satisfy the equation, such that \(N_O=0\), it will be impossible.
anonymous
  • anonymous
Thanks so much!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.