anonymous
  • anonymous
find the vertices and foci of the hyperbola: Y^2/5-X^2=1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
The foci of this hyperbola are found using the Pythagorean Theorem \[a^2+b^2=c^2\] Whereas the vertices of the parabola are given as \[(0,\pm a)\] The equation of this hyperbola follows the form \[\frac{y^2}{a^2}-\frac{x^2}{b^2}=1 \] Can you solve the problem now?
anonymous
  • anonymous
not really i need further explaining
anonymous
  • anonymous
What didn't you understand?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
what # to put where
anonymous
  • anonymous
OK, so the equation is \[\frac{y^2}{5}-x^2=1\] equivalent to \[\frac{y^2}{5}-\frac{x^2}{1}=1\] so \[a^2=5, b^2=1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.