anonymous
  • anonymous
ENCRYPTION METHOD The message to be encrypted is as follows: ‘Enter manual breathing mode’ Step 1: Convert secret message into sets of three (triplets). ENT | ERM | ANU | ALB | REA | THI | NGM | ODE | NOW Step 2: Assign each letter from the triplet sequence a value from the alphanumeric conversion table below and assign each triplet to a matrix of order 3×1. Triplet matrices are denoted by Cn, meaning the nth code triplet. A B C D E F G H I J K L M 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26 C_(1 = ) [■("5" @"14" @"20" )] 〖
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ENCRYPTION METHOD The message to be encrypted is as follows: ‘Enter manual breathing mode’ Step 1: Convert secret message into sets of three (triplets). ENT | ERM | ANU | ALB | REA | THI | NGM | ODE | NOW Step 2: Assign each letter from the triplet sequence a value from the alphanumeric conversion table below and assign each triplet to a matrix of order 3×1. Triplet matrices are denoted by Cn, meaning the nth code triplet. A B C D E F G H I J K L M 1 2 3 4 5 6 7 8 9 10 11 12 13 N O P Q R S T U V W X Y Z 14 15 16 17 18 19 20 21 22 23 24 25 26 C_(1 = ) [■("5" @"14" @"20" )] 〖 C〗_(2= ) [■("5" @"18" @"13" )] C_(3= ) [■("1" @"14" @"21" )] 〖 C〗_(4= ) [■("1" @"12" @"2" )] 〖 C〗_(5= ) [■("18" @"5" @"1" )] 〖 C〗_(6= ) [■("20" @"8" @"9" )] 〖 C〗_(7= ) [■("14" @"7" @"13" )] 〖 C〗_(8= ) [■("15" @"4" @"5" )] 〖 C〗_(9= ) [■("14" @"15" @"23" )] Step 3: Create a cipher key matrix of order 3×3 utilising a birth date (i.e. 23 06 1995). Negative values were added in a checkerboard pattern for increased complexity. For memory and disguising purposes, the cipher key can be written as a letter-hyphen sequence using the alpha-numeric conversion table (0 representing a ‘?’) (The hyphens indicate a negative numeral). The two numerals on the end indicate the order of the cipher key matrix. K = [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )]" = ?-FA-BC-AJ-JE33" Step 4: Pre-multiply coded triplet matrices by the cipher key matrix. Zn represents a matrix with values outside the range of the alpha-numeric conversion table numbers (i.e. 0 > Zn >26).Zn denotes the corresponding over-range matrix of the nth code triplet. [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("5" @"14" @"20" )]= [■(-64@12@19)] KC1 = Z1 [-■("0" &"-6" &"1" @"2" &"3" &"-1" @"9" &"-9" &"5" )][■("1" @"12" @"22" )]= [■(@@)] KC4 = Z4 [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("14" @"7" @"13" )]= [■(@@)] KC7 = Z7 [-■("0" &"-6" &"1" @"2" &"3" &"-1" @"9" &"-9" &"5" )][■("5" @"18" @"3" )]= [■(@@)] KC2 = Z2 [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("18" @"5" @"1" )]= [■(@@)] KC5 = Z5 [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("15" @"4" @"5" )]= [■(@@)] KC8 = Z8 [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("1" @"14" @"21" )]= [■(@@)] KC3 = Z3 [-■("0" &"-6" &"1" @"2" &"3" &"-1" @"9" &"-9" &"5" )][■("20" @"8" @"9" )]= [■(@@)] KC6 = Z6 [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )][■("14" @"15" @"23" )]= [■(@@)] KC9 = Z9 Step 5: Reduce Z-matrices into the appropriate sized matrices with values between 0 and 26. A multiple of 26 will be subtracted from values in the Z-matrix which are over 26, and vice versa for values that are under. [■(-64@12@19)]-[■("-3×26" @"0×26" @0×26)]=[■(14@12@19)] Z1R1 = X1 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z4R4 = X4 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z7R7 = X7 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z2R2 = X2 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z5R5 = X5 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z8R8 = X8 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z3R3 = X3 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z6R6 = X6 [■(@@)]-[■("×26" @"×26" @×26)]=[■(@@)] Z9R9 = X9 Step 6: the encrypted matrices (Xn) can now be converted from this numeric from do a letter-form. C1 = [■(14@12@19)]"=" NLS C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" C2 (Triplet 2) = [■(@@)]"=" Step 7: The encrypted message can now be written in the following sequence: NLS | DECRYPTION METHOD Step 1: find the inverse of the key cipher matrix using expansion of the minors. K = [■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )]= [■("a" _"11" &"a" _"12" &"a" _"13" @"a" _"21" &"a" _"22" &"a" _"23" @"a" _"31" &"a" _"32" &"a" _"33" )] Therefore, the matrix of the cipher K is: K-1 = "1" /|"K" | [■(|■("a" _"22" &"a" _"23" @"a" _"32" &"a" _"33" )|&|■("a" _"13" &"a" _"12" @"a" _"33" &"a" _"32" )|&|■("a" _"12" &"a" _"13" @"a" _"22" &"a" _"23" )|@|■("a" _"23" &"a" _"21" @"a" _"33" &"a" _"31" )|&|■("a" _"11" &"a" _"13" @"a" _"31" &"a" _"33" )|&|■("a" _"13" &"a" _"11" @"a" _"23" &"a" _"21" )|@|■("a" _"21" &"a" _"22" @"a" _"31" &"a" _"32" )|&|■("a" _"12" &"a" _"11" @"a" _"32" &"a" _"31" )|&|■("a" _"11" &"a" _"12" @"a" _"21" &"a" _"22" )| )]="1" /|"K" | [■(|■(3&"-1" @"-9" &"5" )|&|■(&@&)|&|■(&@&)|@|■(&@&)|&|■(&@&)|&|■(&@&)|@|■(&@&)|&|■(&@&)|&|■(&@&)| )] The determinant of every 2x2 matrix within the above 3x3 matrix must be found. The formula for finding the determinant is as follows: |■(&@&)|"=" |■("a" _"22" &"a" _"23" @"a" _"32" &"a" _"33" )|"= " [■("b" &"c" @"d" &"e" )]"= " |"be - cd" |"= " "a" _"22" "a" _"33" "- " "a" _"23" "a" _"32" "= " Therefore, the the cipher key matrix only needs a determinant. K-1 = "1" /|"K" | [■(&&@&&@&&)] |K| is determined utilising the following process: [■("a" _"11" &"a" _"12" &"a" _"13" @"a" _"21" &"a" _"22" &"a" _"23" @"a" _"31" &"a" _"32" &"a" _"33" )]"=" "a" _"11" [■("a" _"22" &"a" _"23" @"a" _"32" &"a" _"33" )]"-" "a" _"12" [■("a" _"21" &"a" _"23" @"a" _"31" &"a" _"33" )]"+" "a" _"13" [■("a" _"21" &"a" _"22" @"a" _"31" &"a" _"32" )] (Upon simplifying) "=" "a" _"11" "a" _"22" "a" _"33" "+" "a" _"12" "a" _"23" "a" _"31" "+" "a" _"13" "a" _"21" "a" _"32" 〖"- a" 〗_"13" "a" _"22" "a" _"31" " –" 〖" a" 〗_"12" "a" _"21" "a" _"33" "- " 〖" a" 〗_"11" "a" _"23" "a" _"32" |K|=[■("0" &"-6" &"1" @"-2" &"3" &"-1" @"9" &"-9" &"5" )]=("0×3×5" )"+ " ("-6×-1×9" )"+" ("1×-2×-9" )"- " ("1×3×9" )" - (6×-2×5)- (0×-9×-1)" |K| = -15 The determinant is now known and thus the inverse of the matrix K can be found. K-1 = 1/(-15) [■(&&@&&@&&)]=[■((-2)⁄5&(-7)⁄5&(-1)⁄5@(-1)⁄15&3⁄5&2⁄15@3⁄5&18⁄5&4⁄5)] This matrix contains values that are do not correspond with those listed in the alpha-numeric conversion able, hence must be converted into a matrix that does: [■((-2)⁄5&(-7)⁄5&(-1)⁄5@(-1)⁄15&3⁄5&2⁄15@3⁄5&18⁄5&4⁄5)] +[■("1×26" &"1×26" &"1×26" @"1×26" &"0×26" &"0×26" @0×26&"0×26" &"0×26" )]=[■(128⁄5&123⁄5&129⁄5@389⁄15&3⁄5&2⁄15@3⁄5&18⁄5&4⁄5)] Therefore the inverse of the cipher key matrix K is [■(128⁄5&123⁄5&129⁄5@389⁄15&3⁄5&2⁄15@3⁄5&18⁄5&4⁄5)]

Looking for something else?

Not the answer you are looking for? Search for more explanations.