anonymous
  • anonymous
A building lot in a city is shaped as a 30-60-90 dgree triangle. The side opposite the 30 dgree angle measures 41 feet. a. Find the length of the side of the lot opposite the 60 degree angle. b. Find the length of the hypotenuse of the triangular lot. c. Find the sine, cosine, and tangent of the 30 dgree angle in the lot. Write your answers as decimals rounded to four decimal places
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1333582387791:dw| a. 82 b. 41 sqrt2 c. sin 30: .5 cos 30: .8660 tan 30: .5773
anonymous
  • anonymous
YES THANK you :)
anonymous
  • anonymous
The sin, cos, and tan of an angle are really easy to find if you know the angle's measurement. Just type the measurement into a calculator and press the tan, sin, or cos button. It'll always be the same no matter the side lengths.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
but how do I explain my answer for a, b and c questions

Looking for something else?

Not the answer you are looking for? Search for more explanations.