anonymous
  • anonymous
Rationalize the Denominator... the square route of 13 minus the square route of 2 over the square route of 2 plus the square route of 13. Help...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
here;s a example to solve ur's ques... There is just one square root in the denominator, so this is case 1. So to get rid of it we just multiply top and bottom by it. The square root of 3 times the square root of 3 is 3 simply from the meaning of square root, you don't have to write it first as the square root of 9. Remember that the square root of 3 means the number you can square, that is multiply by itself, to get 3, so if you squared it and didn't get 3 it wouldn't be the square root of 3. So by multiplying the top and the bottom by the square root of 3 we get rid of the square root in the bottom. In punishment for this the top got more complicated, and in fact the whole thing does in fact look more complicated after this 'simplification', but many times, like for example when you are adding and need to find common denominators, this sacrifice is worth it, because simplicity is more important in denominators than in numerators.
anonymous
  • anonymous
Actually Rohangrr...there is a sq. rt of 2 + sq. rt. of 13 in the denominator...2 square routes, not one.
anonymous
  • anonymous
To rationalize a fraction, we can first multiply the conjugate of the denominator to both numerator and denominator. (sqrt (13)-sqrt(2))/(sqrt(2)+sqrt(13) =(sqrt(13)-sqrt(2))(sqrt(2)-sqrt(13)) / (sqrt(2)+sqrt(13))(sqrt(2)-sqrt13)) =(sqrt(13)-sqrt(2))(sqrt(2)-sqrt(13))/ (2-13) =-2+2sqrt(13)sqrt(2)-13 /-11 =-15+2sqrt(13)sqrt(2) / -11

Looking for something else?

Not the answer you are looking for? Search for more explanations.