anonymous
  • anonymous
Find an equation of the tangent line to the hyperbola: x^2/a^2 - y^2/b^2 = 1 at the point (x0,x1)
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
implicit diff for this one
anonymous
  • anonymous
\[\frac{2x}{a^2}-\frac{2y}{b^2}y'=0\] \[y'=\frac{x}{a^2}\times \frac{b^2}{y}=\frac{b^2x}{a^2y}\]
anonymous
  • anonymous
yeah i got that but so what's the equation of the tangent line i don't get the textbook's answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\frac{2x}{a^{2}}-\frac{2y}{b^{2}}y'=0\]\[y'=\frac{b^{2}x}{a^{2}y}\]\[m=\frac{b^{2}x_{0}}{a^{2}x_{1}}\]the equation of the tangent line is\[y-x_{1}=\frac{b^{2}x_{0}}{a^{2}x_{1}}\left( x-x_{0} \right)\]
anonymous
  • anonymous
yeah well the textbook says x0x/a^2 - y0y/b^2 = 1 so what's that about
anonymous
  • anonymous
algebra..\[y-x_{1}=\frac{b^{2}x_{0}}{a^{2}x_{1}}\left( x-x_{0} \right)\]\[a^{2}x_{1}y-a^{2}x_{1}^{2}=b^{2}x_{0}x-b^{2}x_{0}^{2}\]\[b^{2}x_{0}^{2}-a^{2}x_{1}^{2}=b^{2}x_{0}x-a^{2}x_{1}y\]look back at the hyperbola equation, plug the point (x0,x1)\[\frac{x_{0}^{2}}{a^{2}}-\frac{x_{1}^{2}}{b^{2}}=1\]\[b^{2}x_{0}^{2}-a^{2}x_{1}^{2}=a^{2}b^{2}\]substitute to the tangent line equation
anonymous
  • anonymous
\[a^{2}b^{2}=b^{2}x_{0}x-a^{2}x_{1}y\]\[\frac{x_{0}x}{a^{2}}-\frac{x_{1}y}{b^{2}}=1\]same as what the textbook said :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.