Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

want some help with this Limit lim(x->0) (1+1/(2*x))^x at least a guidance! thanks!

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

\[\lim_{x \rightarrow 0} (1+1/2x)^x\]
rewrite it as: e^(ln(1 + 1/2x)x) then manipulate it into l'hopital
thing is, we still haven't got to l'hôspital even though I know what ur talkign about. Teacher is not gonna consider any answer using l'hôspital... a real setback to these exercises. anyway to solve this without this tool?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I'll quickly get a pen and try
Just making sure, it's 2x in the denominator, right?
yeah is 1 over 2*x. this is why it is bugging me cuz i can't get rid of the indetermination
is it \[\lim_{x\to \infty}(1+\frac{1}{2x})^x\]?
you mean the limit to zero?
ok think of it as \[(1+\frac{1}{2}\times \frac{1}{x})^x\]
as x tends to 0
oops ok lets try again
and no l'hopital??
lol apparently not hey...
that is cruel
ikr... such a wonderful tool. is like deriving using the concept of rate of change
ok maybe replace \(x\) by \(\frac{1}{z}\)
then take the limit as z goes to infinity
ok, so using l'hôspital, is the answer 1?
I think I got it. Will explain now
oh lord i am in idiot!
but then we get\[\exp\left(\lim_{z\to \infty}{\ln(1+\frac z2)\over z}\right)\]
if you're an idiot satellite I hate to think what that makes me !
tak the limit as x goes to zero oh wait nope not so snappy, ok i am not such an idiot
That will only result in another indeterminate form
right i see that. for a moment i thought it was \(\ln(1)=0\) but it is not damn!
kk I got it, will post method now:
go slaiibak!
can't wait! no derivatives right?
You're supposed to know this rule: \[\LARGE \lim_{x\to \infty}\left(1+\frac{1}{x}\right)^x=e\] \[\Large \lim_{x\to 0} \left(1+\frac{1}{2x}\right)^x\] \[\Large \lim_{x\to 0} \left[\left(1+\frac{1}{2x}\right)^{\frac{2x}{1}\cdot \frac{1}{2x }}\right]^x\] \[\Large \lim_{x\to 0} \left[\left(1+\frac{1}{2x}\right)^{2x} \right]^{\frac{x}{2x}}\] \[\LARGE \left(e\right)^{\frac12}=\sqrt e\] AAhhh.. LOOK WHAT I'VE DONE !! NOW I SEE THAT IT'S NOT INFINITE BUT IS "0" AUFFF... ( at least I'll post it :P ) hahahaah....
lol that is what i got the first try, but i thought it was as x goes to infinity too !
It does have a derivative in, but it's not L"Hospital. Or it's arguable, but will post quickly..
good lord... i'll have to spend these two days studying my retriceoff. have test on wednesday
whould it help to work the problem backwards? (from the answer)
I doubt it
\[\exp(xln(2x+1)) = \exp({x^2 \ln(2x + 1) \over x})\] now using this: \[\lim_{x \rightarrow a} {f(x) - f(a) \over x - a} = f'(a)\] setting f(x) = x^2ln(2x + 1) we get \[\exp( \lim_{x \rightarrow 0} {x^2\ln(2x + 1) - (0)^2 \ln(2(0) + 1)\over x - 0} ) = \exp(f'(0))\]
we can all get the answer with l'hospital, but you said \(no\) \(l'hospital\) so we are doing loops for you
f'(x) = 2x(ln(2x+1) + x^2 / (2x + 1) f'(0) = 0 therefore e^0 = 1. So the limit = 1
well, that's a proof all right I guess since it doesn't technically use l'Hospital it's okay nice one!
would anyone bother to talk me a little bit through the proof? exp(xln(2x+1))=exp(x2ln(2x+1)x) how do u get to this in the first place? i know it sounds dumb but i am new to calculus
It's just a little bit of algebraic manipulation to force it into the f'(a) form. Check if you simplify, you will get back to the original thing.
alright! gonna put some effort into learning more about functions since it is somehow not so clear to me how to manipulate the original expression. nevertheless, surely u guys helped a lot! thanks!!
wow that was pretty snazzy!
haha, got my english from a brit school (I am brazillian)
GChamon, as you do more problems and exercises, you'll start to see it much clearer. Since you're only in the start of calculus now, you'll learn so much more and these things will become more intuitive. Good luck with the test!
thanks! that cheers me little to study! they all told me engineering is not easy. starting to see they were all right

Not the answer you are looking for?

Search for more explanations.

Ask your own question