yrivers36
  • yrivers36
Solve each equation symbolically. With explanation please. sqrt (x)+1=sqrt (x+2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hint... \[\LARGE \sqrt x+1=\sqrt{x+2}\] square both sides..
yrivers36
  • yrivers36
Im not sure but I think I should foil left side of problem
yrivers36
  • yrivers36
\[(\sqrt{x}+1)(\sqrt{x}+1)-x+2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

yrivers36
  • yrivers36
thats an = in front of x
anonymous
  • anonymous
\[\LARGE (\sqrt x+1)^2=(\sqrt{x+2})^2\] \[\LARGE (\sqrt x)^2+2\cdot \sqrt{x}\cdot 1+1^2=x+2\] \[\LARGE x+2\cdot \sqrt{x}=x+2-1\] \[\LARGE 2\cdot \sqrt{x}=x-x +2-1\] \[\LARGE 2\cdot \sqrt{x}=1\] \[\LARGE \sqrt{x}=\frac12\] square both sides and there you go :)
anonymous
  • anonymous
can you do it ?
yrivers36
  • yrivers36
solution manuel says x = 1/4
anonymous
  • anonymous
that's correct. Well done ! ;)
yrivers36
  • yrivers36
Thank you once again :)
anonymous
  • anonymous
Glad to help :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.