anonymous
  • anonymous
Consider an object describing an elliptical path in the plane given by r (t) = (2 cos t, 6sin t), where t is in the interval [0, 2]. if the object is subjected to a field with a force given by the expression G (x, y) = (4xy, y^2), calculate the work done by G to move the object along the trajectory from (2, 0) to (0, 6), in direct order.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[W = \int\limits Gdr\]
anonymous
  • anonymous
just not sure which expression will make easyer to calculate the dot product, paramtric or cartesian.
anonymous
  • anonymous
probably parametric

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I tried parametric, though it would be easier.
anonymous
  • anonymous
Use Polar Coordinate x(t)= 2 cos(t) y(t)= 6 sin(t) P = 4 x y Q = y^2 Compute P(x(t),y(t)) x'(t) + Q(x(t),y(t))x'(t)=120 cos(t) sin^2(t) Integrate the last expression for t= to Pi/2 to obtain 40
anonymous
  • anonymous
This Q(x(t),y(t))x'(t) should be Q(x(t),y(t))y'(t)

Looking for something else?

Not the answer you are looking for? Search for more explanations.