At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the **expert** answer you'll need to create a **free** account at **Brainly**

How can integrals be wonderful -_-

They are once you know them -_=

Fancy Tricks?

@TuringTest: The first 2 are somewhat standard trick. The other two require NOT so standard trick ;)

Changing the bound may work for the first problem :)

Added the answer, so that you guys can check your result.

*
-2(u-1)

This property is nothing but a direct corollary of the mean value theorem.

MrMath I agree, but in competitive it helps though :)

Yeah sure! :)

Although, trivial lol! For the fourth one there is a inequality which you can use.

Don't give any any hint!

Lol sorry! :P

It doesn't seem so correct anymore...

3.
Refer to the attachment.

Oh Sorry.