anonymous
  • anonymous
find the radius of convergence of the taylor series around x=0 for ln(1/(1+2x))
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
i spose we would nee to generate the power series for it first
amistre64
  • amistre64
\[[ln\frac{1}{1+2x}]'=\frac{1/(1+2x)'}{1/(1+2x)}\] \[[ln\frac{1}{1+2x}]'=\frac{-2/(1+2x)^2}{1/(1+2x)}\] \[[ln\frac{1}{1+2x}]'=\frac{-2/(1+2x)}{1/1}\to\ -\frac{2}{1+2x}\]
amistre64
  • amistre64
maybe?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
lol -ln(1+2x) = -2/(1+2x)
amistre64
  • amistre64
-2+4x-8x^2+16x^3-32x^4+64x^5 ... ----------------- 1+2x ) -2 (-2-4x) 4x (4x+8x^2) -8x^2 (-8x^2-16x^3)
anonymous
  • anonymous
2 i think
experimentX
  • experimentX
somewhere i had seen something like this integration dln(1+2x)/dx and expand it as power series.
amistre64
  • amistre64
soo, a relevant power series would be:\[ln(\frac{1}{1+2x})=\int\sum (-1)^{n+1}\ 2^{2n}x^{n}dx\]
amistre64
  • amistre64
\[ln(\frac{1}{1+2x})=\sum_{0}^{inf}\frac{(-1)^{n+1}}{n+1}x^{n+1}\]
amistre64
  • amistre64
forgot the 2^n
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=sum+%28%28-1%29%5E%28n%2B1%29x%5E%28n%2B1%29%292%5En%2F%28n%2B1%29+from+0+to+inf soo close
amistre64
  • amistre64
2^(n+1)
amistre64
  • amistre64
\[ln(\frac{1}{1+2x})=\sum_{0}^{inf}\frac{(-1)^{n+1}2^{n+1}}{n+1}x^{n+1}\] \[lim\frac{(-1)^{n+1}2^{n+1}x^{n+1}}{n+1}\frac{n}{(-1)^{n}2^{n}x^{n}}\] \[lim\frac{-2x}{n+1}\frac{n}{1}\] \[|x|lim\frac{-2n}{n+1} = -2\]
amistre64
  • amistre64
prolly shoulda taken the - with the x :)
amistre64
  • amistre64
all non - ns should be vacated \[|-2x|\ lim\frac{n}{n+1}=2x\] \[2x<1;\ x<\frac{1}{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.