anonymous
  • anonymous
how do i find the eigenvector?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
how do i find the eigenvector?
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\left( A-\lambda I \right)x=0\]lamda is the eigenvalue, x is the eigenvector
anonymous
  • anonymous
i was able to find the eigenvalue \[\left[\begin{matrix}-6 & 1 \\ -2 & -3\end{matrix}\right]\] to be \[\lambda _{1}=-4, \lambda _{2}=-5\] now what's the next step?
myininaya
  • myininaya
@nightshade please don't post off-topic answers. @exraven and elica85 we want x to not be the zero vector also

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
Did you try to plug into exraven's formula to find the eigenvectors
anonymous
  • anonymous
i thought it's lambdaI-A, not A-lambdaI
anonymous
  • anonymous
idk what i'm doing, my school doesn't require us to take linear algebra to take diff eq so i'm suppose to know what to do but i don't
anonymous
  • anonymous
o if i just have to find x, i should be able to...
myininaya
  • myininaya
\[(A-\lambda_n \cdot I)x=0\] For \[\lambda_1=-4\] |dw:1333932816786:dw|
myininaya
  • myininaya
For \[\lambda_2=-5\] |dw:1333932896865:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.