angela210793
  • angela210793
Find all the solutions possible of the system ...using matrices
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
wasiqss
  • wasiqss
system is hidden LOl
anonymous
  • anonymous
wait a second.. she must be writing it !!
angela210793
  • angela210793
|dw:1334243246880:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

wasiqss
  • wasiqss
anxhela , you want it to be done by cramer's rule or gauss elimination
angela210793
  • angela210793
i did |dw:1334243367057:dw| i know wassiq...but u can't use cramer when determinative equals 0
angela210793
  • angela210793
|dw:1334243466671:dw|
wasiqss
  • wasiqss
ahhh yes, determinant is zero . we must go for gauss elimination
wasiqss
  • wasiqss
do you know gauss, i can do that
angela210793
  • angela210793
i did |dw:1334243615536:dw| krocker-capelli but i got
angela210793
  • angela210793
i know Gauss but we have a k in there
wasiqss
  • wasiqss
good :), i havnt done krocker one til yet, but yes k would have been a headache in gauss
Zarkon
  • Zarkon
k has to be 1
Zarkon
  • Zarkon
if you want a solution
angela210793
  • angela210793
how did u find it
TuringTest
  • TuringTest
Zarkon is the only one I won't chastise for just giving answer since they are so provocative ;)
Zarkon
  • Zarkon
-2 times row one = row 3
wasiqss
  • wasiqss
Zarkon if k=1 , then game is over :D
Zarkon
  • Zarkon
no...if \(k\ne 1\) then there is no soluition.
Zarkon
  • Zarkon
solution
angela210793
  • angela210793
u see..i tried Gauss..and i got at the row3 0 0 0 2 where did i got wrong O.o
Zarkon
  • Zarkon
\[\left.\begin{matrix}x-y+z=k \\ -2x+2y-2z=-2\end{matrix}\right.\] multiply first by 2 \[\Rightarrow\] \[\left.\begin{matrix}2x-2y+2z=2k \\ -2x+2y-2z=-2\end{matrix}\right.\] add you get \(0=2k-2\Rightarrow k=1\)
wasiqss
  • wasiqss
NIce work zarkon
phi
  • phi
If you put the augmented matrix in reduced row echelon form you get \[\left[\begin{matrix}1 &0 & 1&1 +k/2 \\ 0 & 1 &0 & 1-k/2 \\ 0 & 0 & 0&2k-2 \\\end{matrix}\right]\]
phi
  • phi
as zarkon noted, k must be 1 for there to be a solution. However, note that there are an infinite # of sols if k=1, because you have a non-zero null space
angela210793
  • angela210793
the system would have infinite solutions for r(A)=r(Ab) and no solutions for r(A)
angela210793
  • angela210793
ok...thanks
phi
  • phi
The complete solution is \[\left(\begin{matrix}3/2 \\ 1/2 \\ 0\end{matrix}\right)+c\left(\begin{matrix}1 \\ 0 \\ -1\end{matrix}\right)\] where c is arbitrary

Looking for something else?

Not the answer you are looking for? Search for more explanations.