anonymous
  • anonymous
Differentiate the function f(x) = (lnx)/(1+ln(2x))
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
use quotient rule...
anonymous
  • anonymous
1/(x(lnx+1)^2) by using the quotient rule :-)
anonymous
  • anonymous
Oops, sorry

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i'm trying it i'm not sure if i'm getting it just show me so i can check
anonymous
  • anonymous
|dw:1334417837384:dw|
anonymous
  • anonymous
like that helps
anonymous
  • anonymous
It's (1+ln2)/(x(ln2x + 1)^2)
anonymous
  • anonymous
how did you get that
anonymous
  • anonymous
|dw:1334418069246:dw|
anonymous
  • anonymous
so then [(1+ln(x)) / x] / [(1+ln(2x))^2] is what
anonymous
  • anonymous
i mean (1+ln(2)) / x
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=d%28lnx%2F%281%2Bln2x%29%29%2Fdx Take a look at show steps :-)
anonymous
  • anonymous
([(1+ln(2x)) / x]-[(lnx)/x] )/ [(1+ln(2x))^2]
TuringTest
  • TuringTest
super secret tip: the quotient rule is best avoided. better to rewrite the problem and use the product rule
anonymous
  • anonymous
but that involves confusion using the power of -1 ,i feel...
TuringTest
  • TuringTest
yes, so if you know the chain rule this shouldn't be too hard\[\ln x(1+\ln(2x))^{-1}\]
anonymous
  • anonymous
thanks for informin@Turingtest.
TuringTest
  • TuringTest
so @calyne try this with product rule\[\ln x(1+\ln(2x))^{-1}\]let\[u=\ln x\]\[v=(1+\ln(2x))^{-1}\]
anonymous
  • anonymous
oh nvm nvm sry oh god

Looking for something else?

Not the answer you are looking for? Search for more explanations.