anonymous
  • anonymous
Differentiate f and find the domain of f. f(x) = x/[1-ln(x-1)]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
use quotient rule.
anonymous
  • anonymous
yeah. this i know.
anonymous
  • anonymous
i got [2-ln(x-1)]/[(1-ln(x-1))^2] but that's wrong

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

campbell_st
  • campbell_st
I think it looks more like this u = x du/dx = 1 v = 1-ln(x -1) dv/dx = -1/(x-1) \[dy/dx = (1 - \ln(x -1) + x/(x-1))/(1-\ln(x -1))^2\]
anonymous
  • anonymous
The answer in the texbtook is f'(x) = [2x - 1 - (x - 1) ln(x - 1)] / [(x - 1)[1 - ln(x - 1)]^2]; domain of f = (1, 1+e) U (1 + e, infinity)
anonymous
  • anonymous
I need this explained to me.
anonymous
  • anonymous
still.
anonymous
  • anonymous
Optionally, use the reverse multiplication rule. Say: f(x) = x*(1-ln(x-1))^(-1) Quotient rule tend to be quite messy. But can you show what you did so far? I may be able to guide you through it. :-)
myininaya
  • myininaya
\[y=\frac{x}{1-\ln(x-1)}\] You could do log diff. \[\ln(y)=\ln(\frac{x}{1-\ln(x-1)})\] \[\ln(y)=\ln(x)-\ln(1-\ln(x-1))\] Now diff both sides \[\frac{y'}{y}=\frac{1}{x}-\frac{0-\frac{1}{x-1}}{1-\ln(x-1)}\] So Simplifying right hand side first we have \[\frac{y'}{y}=\frac{1}{x}-\frac{-1}{(x-1)(1-\ln(x-1))}\] Now multiply y on both sides \[y'=y(\frac{1}{x}+\frac{1}{(x-1)(1-\ln(x-1))})\] And replace y with \[\frac{x}{1-\ln(x-1)}\] So this is another way :)
experimentX
  • experimentX
http://www.wolframalpha.com/input/?i=differentiate+x%2F%5B1-ln%28x-1%29%5D good old classic way click on to take a peek at the steps.

Looking for something else?

Not the answer you are looking for? Search for more explanations.