anonymous
  • anonymous
a. find the area enclosed in the inner loop of the limacon, r=1+2costheta. b. find hte area inside the limacon but outside the inner loop
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
b) \[2 \int_0^{\frac{2 \pi }{3}} \frac{1}{2} (2 \cos (\theta )+1)^2 \, d\theta=\frac{3 \sqrt{3}}{2}+2 \pi \]
anonymous
  • anonymous
a)\[2 \int_{\frac{2 \pi }{3}}^{\pi } \frac{1}{2} (2 \cos (\theta )+1)^2 \, d\theta=\pi -\frac{3 \sqrt{3}}{2} \]
anonymous
  • anonymous
i'm not supposed to use a double integral?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
the way I see it the first step is to find the bounds on theta I think having the picture ion front of you helps
anonymous
  • anonymous
Both of them are single integrals
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=plot%20r%3D1%2B2costheta.%20%20&t=crmtb01
anonymous
  • anonymous
sorry those bounds are wrong \[r=0=1+2\cos\theta\implies \theta=\frac{2\pi}3,\frac{4\pi}3\]which means the bounds on theta are\[\frac{2\pi}3\le\theta\le\frac{4\pi}3\]
anonymous
  • anonymous
The bounds on r are just the polar function itself\[0\le r\le1+2\cos\theta\]and the area differential in polar coordinates is\[dA=rdrd\theta\]hence the intergal for the area of the inner loop should be\[\large \int\int dA=\int_{\frac{2\pi}3}^{\frac{4\pi}3}\int_{0}^{1+2r\cos\theta}rdr\theta\]
anonymous
  • anonymous
...I assumed we are working in the interval \([0,2\pi]\)
anonymous
  • anonymous
and @colorful i'm at work so i can't be checking this all the time :( but it was a homework problem last night and it blew my mind cuz i've never even seen a limacon before last night.. -_-"
anonymous
  • anonymous
The bounds for my solutions above are fine

Looking for something else?

Not the answer you are looking for? Search for more explanations.