AravindG
  • AravindG
find integral
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
???
AravindG
  • AravindG
|dw:1334685381984:dw|
anonymous
  • anonymous
is that \[\int\limits_{}^{}\]1/(cos(x)+csc(x))dx ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\int{1\over\cos x+\csc x}dx\]I think
anonymous
  • anonymous
hey aarivnd
anonymous
  • anonymous
ok, fine I'll check wolfram :(
anonymous
  • anonymous
whoah http://www.wolframalpha.com/input/?i=integral%201%2F(cosx%2Bcscx)dx&t=crmtb01 imaginary something?
anonymous
  • anonymous
where did you get this problem arvind ?
anonymous
  • anonymous
hey arvii plz don't post dis types of question.....................it is non intergr.function
AravindG
  • AravindG
@neha y u say that ..honstly i didnt know this was non-integrable...but it is a qn from my wrksheet @colorful the qn is like u hav told
AravindG
  • AravindG
this is an integrabale fn according to me
AravindG
  • AravindG
@experimentX , @Ishaan94 , @FoolForMath pls comment on this qn
AravindG
  • AravindG
@phi , @Mr.Math , @Mertsj pls help
AravindG
  • AravindG
@apoorvk
AravindG
  • AravindG
@Luis_Rivera
AravindG
  • AravindG
@myininaya
AravindG
  • AravindG
@KingGeorge
dumbcow
  • dumbcow
i don't see any other way to do it other than wolfram, look at the steps they give make trig substitution, then its a very ugly partial fractions
AravindG
  • AravindG
k

Looking for something else?

Not the answer you are looking for? Search for more explanations.