Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

squirtskid

Find F'(x) if F(x) = integral from 0 to x of ((cosz)/(z^3 +1)

  • one year ago
  • one year ago

  • This Question is Closed
  1. imagreencat
    Best Response
    You've already chosen the best response.
    Medals 2

    You just need to replace all zs with x. Since you're getting the derivative of the integral. Also, you don't need to multiply anything more, because the derivative of x is just 1. But, let's say the upper bound wasn't just x but a function that is differentiable, say sin x. There is a need to multiply an additional cos x after replacing all zs with sin x.

    • one year ago
  2. rulnick
    Best Response
    You've already chosen the best response.
    Medals 0

    I agree with imagreencat. The answer is F'(x) = ( cos x ) / (x^3 + 1).

    • one year ago
  3. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    Let, \( \LARGE g(z) = \frac{(\cos z)}{(z^3 +1)} \) and \( G(z) = \int g(z) dz\) Then, \( \LARGE F(x) = \int_{0}^{x} \frac{(cosz)}{(z^3 +1)} dz = G(x) - G(0)\) \( \LARGE F'(x) = G'(x) - 0 = \frac{ ( cos x ) }{(x^3 + 1).}\)

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.