Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

What is the sum of the infinite series?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\sum_{n=2}^{\infty} 2^n/3*5^{n+2}\]
I see that you can take out the 5^2 and multiply that with three then simplify to get \[(1/75)*(2/5)^n\] which is a geometric series. But when I solve it out like you would a regular geometric series I get 1/45. But wolframalpha says 20
your idea is correct. lets make sure the arithmetic is correct

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\frac{1}{75}\sum_{n=2}^{\infty}\left(\frac{2}{5}\right)^n=\frac{1}{75}\left(\frac{\frac{4}{625}}{1-\frac{2}{5}}\right)\]
How do you get 4/625 on top?
we are starting at n=2, not n=1. The first term of the sequence is 4/625.
Oh! The first term!
Duh! Thanks!
yw! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question