Here's the question you clicked on:
shivam_bhalla
5 pens are to be distributed among 4 children randomly. The probabilty that each child get altleast one pen is ?? @FoolForMath there are two formulas, which are: \[(k-1)C _{n-1} \] where k->Total no of non-distinguishable objects n->total no of distinguishable receivers and \[(n+k-1)C _{k} \] Now can you tell me which formula to use in this case and why?
I have already answered you (in that thread)
Sorry. By mistake I wrote the wrong name :(
No I am having doubt about which formula to use in which case??
In this case. The "why" is explained well in the wike page.
I still don't get the difference between theorem 1 and theorem 2 in Stars and bars combinatorics. Can you please make it easier for me to differentiate them
Anybody willing to help??
@FoolForMath , sorry for troubling you once again, but I am still not getting the difference between theorem 1 and theorem 2 in Stars and bars combinatorics. Can you please make it easier for me to differentiate them ? Please???
Sorry, right now I can't make things any easier for you.
Ok. No problem . Thanks for prompt reply @FoolForMath I will keep trying it myself :)