ns36
  • ns36
Find a power series representation for f(x) = ln(1-x) and find the radius of convergence. Please help!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
since f' = -1/(1-x) we can do long division to get that power series; then integrate it back up to ln(1-x)
ns36
  • ns36
Thanks but I still don't quite understand how you get the power series from the derivative of the function :(
amistre64
  • amistre64
the long division creates a pwer series; an equivalent polynomial. integrateing that takes us back to ln(1-x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Remember the geometric series?\[ \frac{1}{1-x} = \sum_{n = 0}^{\infty} x^{n}\]for |x| < 1. So we get -(1/(1-x)), that is:\[- \sum_{n = 0}^{\infty} x^n = -1 -x -x^2...\]Integrate this to get ln(1-x)
amistre64
  • amistre64
-1-x-x^2-x^3-x^4- .... -------------------- 1-x ) -1 (-1+x) ------ -x (-x+x^2) --------- -x^2 \[D[ln(1-x)]=\frac{-1}{1-x}\] \[D[ln(1-x)]=-(1+x+x^2+x^3+x^4+...)\] integrate both sides \[ln(1-x)=\int -(1+x+x^2+x^3+x^4+...) dx\] \[ln(1-x)=-(x+\frac{x^2}{2}+\frac{x^3}{3}+\frac{x^4}{4}+\frac{x^5}{5}+...)\]
ns36
  • ns36
Thanks! How does one find the radius of convergence for a power series?
amistre64
  • amistre64
this gives us the summation of ln(1-x) as:\[\sum_{n=0}^{inf}\frac{-x^{n+1}}{n+1}\] the radius of convergence is the limit as n goes to inf of the ratio of an+1/an
anonymous
  • anonymous
There is a theorem that states that the derivatives (and integration?) have the same radius of convergence also.
amistre64
  • amistre64
\[lim\frac{a_{n+1}}{a_{n}}:\ \lim_{n\to inf}\frac{-x^{n+1}}{n+1}*\frac{n}{-x^{n}}\]
amistre64
  • amistre64
\[lim\frac{-x*n}{n+1}\to\ |-x|\lim\frac{n}{n+1}\] \[|-x|*1\] set it up such that: \[|-x|<1\]and simplify such that |x|
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=sum+-x%5E%28n%2B1%29%2F%28n%2B1%29%2C+n+%3D+0+to+inf the wolf agree
ns36
  • ns36
Hahaha thanks so much for all of your help!
ns36
  • ns36
How would I plug in (x-.5) into the power series you found above to express ln2 as a sum of an infinite series?
amistre64
  • amistre64
when x=-1; you get ln(2) right?
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=sum+-%28-1%29%5E%28n%2B1%29%2F%28n%2B1%29%2C+n+%3D+0+to+inf
amistre64
  • amistre64
i think when we go beyond the radius of convergence is when we get iffy in values

Looking for something else?

Not the answer you are looking for? Search for more explanations.