anonymous
  • anonymous
To find the height of a tall tree, a surveyor moves 140 feet away from the base of the tree and then, with a transit 4 feet tall, measures the angle of elevation to the top of the tree to be 53°. What is the height of the tree?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
In order to solve this question, you need to use trigonometry and the rules of similar triangles. To find 'y', we use trigonometry. \[\tan 37 = y \div 4\] y = 4 tan37 y = 3.014 Now you need to find 'x' and that will help you find the height of the tree Using similar triangles, we get the following relation: \[(140+y)/(x+4) = 140/x\] we know y to be 3.014 so this becomes \[(143.014)/(x+4) = 140/x\] Now you cross multiply and solve for 'x' 140(x+4) = 143.014(x) 3.014x = 560 x = 185.8 feet Height of tree according to figure = x+4 height of tree is approximately 190 feet

Looking for something else?

Not the answer you are looking for? Search for more explanations.