Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Prove that each statement is true for all positive integers. 2 + 4 + 6 + ... + 2n = n^2 + n

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
What's the first step? What do I add to both sides? I never know what to add for these questions.
I would start by simply checking what the lefthand side sums up to. Let's take smaller sums before going up to 2n. 2+4+6 = 4*3, right? 2+4+6+8=5*4. 2+4+6+8+10 = 6*5. See a trend here?
What do I do with that trend?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

it is true for n=1 2=1^2+1 ... Assume it is true for n=k so we have 2+4+6+...+2k=k^2+k Now we want to show it is true for n=k+1 2+4+6+...+2k+2(k+1)=k^2+2k+2(k+1) =k^2+2k+2k+2 =k^2+2k+1+2k+1 do you think you can finish now?
Yeah, I can. But how did you know to add 2(k+1) to both sides? That's what confuses me.
We want to show it is true for n=k+1 right? so we have \[2+2(2)+2(3)+...+2(k+1)\] I replace n with k+1
the integer before k+1 is k
\[2(1)+2(2)+2(3)+...+2(k)+2(k+1)\]
But we know from assuming n=k we had \[2(1)+2(2)+2(3)+...+2(k)=k^2+k\]
So I replace 2(1)+2(3)+2(3)+...+2(k) with k^2+k in 2(1)+2(2)+2(3)+...+2(k)+2(k+1) k^2+k +2(k+1)
I did make a type-0 earlier but anyways this last post is good so we have k^2+k+2k+2 k^2+2k+1+k+1 (k+1)^2+(k+1)
Thank you!

Not the answer you are looking for?

Search for more explanations.

Ask your own question