2bornot2b
  • 2bornot2b
How do we figure out what is going to be the domain of the log function for complex numbers? It is easy to figure out for inverse trigonometric functions, since we can draw the graph. But how to do the same for log function?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
yeah
2bornot2b
  • 2bornot2b
@TuringTest can you help?
TuringTest
  • TuringTest
I am terrible at complex analysis... I also didn't get that @ you sent me; I better post that in feedback :S

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

experimentX
  • experimentX
looks like all numbers ... excluding zero.
2bornot2b
  • 2bornot2b
Thanks for coming!
TuringTest
  • TuringTest
very welcome! if only I could help ....
2bornot2b
  • 2bornot2b
@experimentX The function is a multiple valued function, so there must be an interval. According to my book it says the interval is -pi to +pi, my question was, how to find that range. I hope now I have clarified the thing.
experimentX
  • experimentX
I was talking about log for complex values. Inverse Trigonometric functions have range pi to -pi, because they are (they are periodic ... period of 2pi) <--- any value in terms of pi can be expressed in terms of -pi and +pi |dw:1335459261795:dw|
experimentX
  • experimentX
and of course it must be multivariable function (not a function)
2bornot2b
  • 2bornot2b
Yes, that is exactly what I am searching for. For sin inverse, you can easily see from the picture what is going to be the range for principle value. And I have been taught to figure that out seeing the plot of sin inverse. But here in log z, how do I find the range for principle value. That is my question.
experimentX
  • experimentX
in a same way we say sin(pi/2) = sin(2pi + pi/2) = sin(4pi + pi/2) = sin(6pi + pi/2) = 1 arcsin(1) = pi/2, 2pi+pi/2, 4pi + pi/2, ...
experimentX
  • experimentX
now let's check for log, the domain is going to be all comples plane except 0 ln(z) = ln(e^(ln|z| + iarg(z)) = ln|z| + i arg(z)
experimentX
  • experimentX
as long as |z| != zero, i think we will have all values of complex plane as our domain.

Looking for something else?

Not the answer you are looking for? Search for more explanations.