Find the general solution \[{dP \over dt} = 0.08P\left(1-{P \over 1000} \right) -15\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the general solution \[{dP \over dt} = 0.08P\left(1-{P \over 1000} \right) -15\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I started by multpling and factoring the right side
then it became seperable and I ended up with \[\int{25 \over P - 250} - {25 \over P - 750} dP = - \int dt\] after partial fractions
\[25 \ln {|P - 250| \over |P - 750|} = -t + c\] how do I solve this thing for P?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Do you need to make it into a P= something form? Because that one up there is already a considerable final answer, in my opinion.
It's a population growth equation, i need to use it to solve for some populations

Not the answer you are looking for?

Search for more explanations.

Ask your own question