Wondermath
  • Wondermath
What's the derivative of the following? (I will draw it)
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Wondermath
  • Wondermath
|dw:1335940380736:dw|
Wondermath
  • Wondermath
is it e^(x/2)ln2
anonymous
  • anonymous
1/2e^1/2x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I think it's only \(\LARGE \frac{e^{x/2}}{2} \) Isn't it? It can be rewritten as e^(x/2)
Wondermath
  • Wondermath
can u tell me how you got it?
anonymous
  • anonymous
Rewrite it as \[ e^\frac{x}{2} \]Then the derivative of e^u is e^u u', right? So we have derivative of that = e^(x/2) * d(x/2) = 1/2 :-)
anonymous
  • anonymous
\[\huge (\sqrt{e})^x=(e^{1/2})^x=e^{x/2} \] Apply chain rule to get \[\huge e^{x/2} \over\huge 2 \]
kropot72
  • kropot72
\[(\sqrt{e})^{x}=(e ^{1/2})^{x}=e ^{x/2}\]
anonymous
  • anonymous
|dw:1335940696779:dw|
thomas5267
  • thomas5267
The winner of the LaTeX speed competition is...@bmp ! Congratulations!
Wondermath
  • Wondermath
thanks guys :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.