anonymous
  • anonymous
if x and y are two real quantities, then show that the equation cosy= x + 1/x is impossible.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Simply because -1<= cosx <=1
anonymous
  • anonymous
x--> any variable :) In your case,it's y
anonymous
  • anonymous
|dw:1336390482629:dw||dw:1336390511645:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Take LCM of x+ 1/x and you will see that cosy is always greater than 1
anonymous
  • anonymous
or lesser than -1
UnkleRhaukus
  • UnkleRhaukus
what if both x and y are complex/
anonymous
  • anonymous
use AM>GM
anonymous
  • anonymous
ull get x+ 1/x > 2
anonymous
  • anonymous
and cos y <=1
anonymous
  • anonymous
so they can ne ver be equated

Looking for something else?

Not the answer you are looking for? Search for more explanations.