anonymous
  • anonymous
is 2x-5y=10 and -2x=3y+6 infinite or no solution
MIT 6.00 Intro Computer Science (OCW)
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
i got no solution
anonymous
  • anonymous
Is it a system of equations? If so, simple to solve x = -15/8 and y = -3/4
anonymous
  • anonymous
yup

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

atlas
  • atlas
y=-2 and x=0 The system has a finite solution
atlas
  • atlas
Add the corresponding left hand and right hand sides of both the equations
anonymous
  • anonymous
I agree with atlas. It has a finite solution (y = -2, x=0). Here's a detailed solution: You have these 2 equations: \[Eq 1: 2x - 5y = 10\]\[Eq 2: -2x = 3y + 6\] Now, subtract 3y to both sides of Eq2 to get: \[Eq 1: 2x - 5y = 10\]\[Eq 2: -2x - 3y = 6\] Add the corresponding sides of the equations: \[(2x + (-2x)) + ((-5y) + (-3y)) = 10 + 6\] and you'll get: \[-8y = 16 \rightarrow y = -2\] To get x, just substitute -2 to y in one of the equations, say in Eq1: \[2x -5(-2) = 10\]\[2x + 10 = 10\]\[2x = 0\]\[x =0\] You'll get the same result even if you do the substitution in Eq2. :)
anonymous
  • anonymous
kcpass ,u have given answer with accurate precision.

Looking for something else?

Not the answer you are looking for? Search for more explanations.