Callisto
  • Callisto
Integration problem... \[\int \frac{dx}{sin^4x+cos^4x}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
\[=\int \frac{sec^4x \ dx}{tan^4x +1}\]\[=\int \frac{(tan^2x+1)sec^2x \ dx}{tan^4x +1}\] \[= \frac{(tan^2x+1) \ d(tanx)}{tan^4x +1}\] Let t=tanx Integral becomes\[= \frac{(t^2+1) \ dt}{t^4 +1}\] How should I continue?
Callisto
  • Callisto
@shivam_bhalla :(
blockcolder
  • blockcolder
Partial fractions, but first \(t^4+1=t^4+2t^2+1-2t^2=(t^2+1)^2-(t\sqrt{2})^2\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Why haven't my teacher taught me partial fraction....... /_\
anonymous
  • anonymous
try this divide throught out by t^2 so it becomes (1+1/t^2)/(t^2 +1/t^2).. then substitute t-(1/t) =m so the equation becomes dm/(m^2 +2) which you can integrate
anonymous
  • anonymous
@1729antony , is absolutely correct. :)
anonymous
  • anonymous
@blockcolder , with partial fractions, the problem becomes hectic to solve
blockcolder
  • blockcolder
I just remembered a problem wherein a t^4+1 came out, and I immediately thought of partial fractions, since that's what I did that time.
Callisto
  • Callisto
So, here it goes~ \[\int \frac{dx}{sin^4x+cos^4x} = \int\frac{sec^4x}{tan^4x+1}dx = \int \frac{tan^2x+1}{tan^4+1}d(tanx) \]\[= \int \frac{t^2+1}{t^4+1}dt = \int \frac{1+\frac{1}{t^2}}{t^2+\frac{1}{t^2}}dt \]\[Let \ m=t-\frac{1}{t}, \ dm = 1+\frac{1}{t^2}dt\]\[ \int \frac{1+\frac{1}{t^2}}{t^2+\frac{1}{t^2}}dt = \int \frac{1}{m^2+2}dm = \int \frac{\sqrt2sec^2y}{(\sqrt2tany)^2+2}dy\]\[= \frac{\sqrt2}{2}\int \frac{sec^2y}{tan^2y+1}dy = \frac{\sqrt2}{2} \int dy = \frac{\sqrt{2}}{2}y+C\]\[ = \frac{\sqrt{2}}{2} tan^{-1}(\frac{tanx-\frac{1}{tanx}}{\sqrt2})+C\] Sigh... Probably, it's going to be wrong :|
anonymous
  • anonymous
@Callisto , you got it right. Well done :)
Callisto
  • Callisto
Finally... (burst into tears...)

Looking for something else?

Not the answer you are looking for? Search for more explanations.