Explain this identity.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Explain this identity.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hmm... is that e^(ix) + e^(ix) so = 2e^(ix) on the right side?
\[\cos(x)=\frac{e^{ix}+e^{-ix}}{2} \]
that means I can split cos(x) into two different functions right?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what do you mean split up cosx ? that looks a bit like the hperbolic coshx...
Well there is a problem where I try to show if cos(x) is an eigenfunction of an operator. I did the operation and found out it wasn't but then my book says if it's not a the eigenfunction that it must be a superposition eigenfunction so it splits it into two functions. I just dont see how it splits or how this superposition will be the eigenfunction.
Can you at least show me how \[\cos(x)=\frac{e^{ix}+e^{-ix}}{2} \]
this is guess, but try doing the series expansion for e^(ix) + e^(-ix). i have a feeling the imaginary terms will cancel.
Write e^ix =cos(x)+i sin(x)
e^(ix) = cos x + i sin x (Euler's Formula) e^(-ix) = cos(-x) + i sin (-x) = cos x- i sin x Add them.

Not the answer you are looking for?

Search for more explanations.

Ask your own question