y2o2
  • y2o2
prove that :
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
y2o2
  • y2o2
\[\large {^{2n} C _n} = {(^n C _0)}^2 +{(^n C _1)}^2 +{(^n C _2)}^2 +...+{(^n C _n)}^2 \]
KingGeorge
  • KingGeorge
So in summation notation, show that\[\binom{2n}{n}=\sum_{i=0}^n \binom{n}{i}^2\]
shubhamsrg
  • shubhamsrg
you can use induction..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
Use Vandermonde's identity
Mimi_x3
  • Mimi_x3
well have you tried it?
Mimi_x3
  • Mimi_x3
since it was from 2 months ago..
y2o2
  • y2o2
Yes , and it came up with nothing
anonymous
  • anonymous
no it works.
Mimi_x3
  • Mimi_x3
\[LHS: \binom{2n}{n} x^{n} \] \[RHS\left[\binom{n}{0}\binom{n}{n}+\binom{n}{1}\binom{n}{n-1}+\binom{n}{2}\binom{n}{n-2}+....+\binom{n}{n-2}\binom{n}{2}+\binom{n}{n-1}\binom{n}{1}+\binom{n}{n}\binom{n}{0}\right] *x^n\] \[By ~Symmetry: \binom{n}{n} = \binom{n}{0} ; \binom{n}{n-1} = \binom{n}{1} \] \[hence~ RHS = \left[\binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+...+\binom{n}{n}^{2}\right] x^n\] \[hence, coeeficients~ of~ x^n~ are~ the ~same \] \[\therefore, \binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+...+\binom{n}{n}^{2} = \binom{2n}{n} \]
anonymous
  • anonymous
use this. its better. http://upload.wikimedia.org/wikipedia/en/math/4/0/6/406c9e30b2566d50df58a5dc3315d1d2.png
Mimi_x3
  • Mimi_x3
whats wrong with the method i used?
anonymous
  • anonymous
nothing. I said its easier to use vandermonde's identity.
Mimi_x3
  • Mimi_x3
okay; well i dont know how to use that identity lol
anonymous
  • anonymous
just plug in n every where except at k(its a summation variable).
y2o2
  • y2o2
thank you, i got it now :)
Mimi_x3
  • Mimi_x3
You're welcome (:
Mimi_x3
  • Mimi_x3
Sorry I made a typo at the end: \[\therefore, \binom{n}{0}^{2}+\binom{n}{1}^{2}+\binom{n}{2}^{2}+...+\binom{n}{n}^{2} = \binom{2n}{n} ^2\]
y2o2
  • y2o2
yeah , i realized that :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.