help.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

the last equation is supposed to be f'(1)=

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

after learning the derivative rules; you never go back to the limit definition ...
i knoow, but that's what he wants! ;/
then plug in the (1+h) into the function and algebra it out; its simple enough with that function
\[\lim\frac{5-2(1+h)-(5-2(1))}{(1+h)-1}\]
well we have \[f'(1)=\lim_{\Delta x \rightarrow 0}(f(1+\Delta x)-f(1))/\Delta x\] we have f(1+delta x)= 5-(2*(1+delta x)) =3-2*(delta x) & f(1)= 3 put these in above equation we have (3-2*(delta x)-3)/delta x delta x gets cancelled & we have -2 as answer..
yeeah, thanks. i got it :))
good luck ;)

Not the answer you are looking for?

Search for more explanations.

Ask your own question