anonymous
  • anonymous
help.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
anonymous
  • anonymous
the last equation is supposed to be f'(1)=
anonymous
  • anonymous
@amistre64

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
after learning the derivative rules; you never go back to the limit definition ...
anonymous
  • anonymous
i knoow, but that's what he wants! ;/
amistre64
  • amistre64
then plug in the (1+h) into the function and algebra it out; its simple enough with that function
amistre64
  • amistre64
\[\lim\frac{5-2(1+h)-(5-2(1))}{(1+h)-1}\]
anonymous
  • anonymous
well we have \[f'(1)=\lim_{\Delta x \rightarrow 0}(f(1+\Delta x)-f(1))/\Delta x\] we have f(1+delta x)= 5-(2*(1+delta x)) =3-2*(delta x) & f(1)= 3 put these in above equation we have (3-2*(delta x)-3)/delta x delta x gets cancelled & we have -2 as answer..
anonymous
  • anonymous
yeeah, thanks. i got it :))
amistre64
  • amistre64
good luck ;)

Looking for something else?

Not the answer you are looking for? Search for more explanations.