anonymous
  • anonymous
Determine the tangent line to he curve y^2(2-x)=x^3 at the point P(1,1).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
put it like this: \[y=\pm \sqrt{x ^{3}/(2-x)}\] abd find the derivative
anonymous
  • anonymous
i did \[f(1) =1\] \[(f(x))^2.(2-x)=x^3\] and derived it
myininaya
  • myininaya
\[y^2(2-x)=x^3\] \[(y^2)'(2-x)+y^2(2-x)'=(x^3)' \text{ product rule }\] \[2yy'(2-x)+y^2(0-1)=3x^2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeah, i did that :)
myininaya
  • myininaya
\[2yy'(2-x)+y^2(-1)=3x^2\] \[2yy'(2-x)-y^2=3x^2\]
myininaya
  • myininaya
\[\text{ add } y^2 \text{ on both sides }\] \[\text{ divide both sides by } 2y(2-x) \]
myininaya
  • myininaya
The objective is to solve for y' Following these steps will do that y' is the slope by the way
anonymous
  • anonymous
thank you :))
anonymous
  • anonymous
\[(2-x) y^2=x^3 \]Calculate the total derivative of the above\[2 (2-x) y dy-y^2 dx=3x^2 dx \]Solve for dy\[dy=-\frac{\left(3 x^2+y^2\right) dx}{2 (x-2) y} \]then divide both sides by dx\[\frac{dy}{ dx}=-\frac{\left(3 x^2+y^2\right)}{2 (x-2) y} \]Evaluate the RHS of the above at point (1,1)\[-\frac{\left(3\ 1^2+1^2\right)}{2 (1-2) 1}=2 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.