## mahmit2012 3 years ago solve the problem without calculate x

1. mahmit2012

|dw:1336859839299:dw|

2. alexwee123

root n=1-n square both sides n=(1-n)^2 then solve

3. mahmit2012

give me the value

4. alexwee123

|dw:1336860022459:dw| |dw:1336860159440:dw|

5. mahmit2012

please dont calculate x or n...

6. alexwee123

one is extraneous :o^^

7. mahmit2012

just calculate 2x+xsqx

8. alexwee123

oh are these 2 equations linked with each other, like is the value of n for the first equation = n for second? ;o

9. shashi20008

from 1st eqn$x = 1 - \sqrt{x}$ replacing 'x' with this value in $x \sqrt{x}$ we get$2x + (1 - \sqrt{x})\sqrt{x}$$2x + (\sqrt{x} - x)$$x + \sqrt{x} = 1, as per eqn 1.$

10. alexwee123

plug in value of n from first equation then plug it into second

11. mahmit2012

i know but that is wrong way please shashi solution

12. alexwee123

oh okay :o

13. Callisto

Don't know if it works... $x+\sqrt x =1$ $2x +x\sqrt x$$= 2(1-\sqrt x) + x\sqrt x$$= 2-2\sqrt x + x\sqrt x$$= 2 - \sqrt x( 2- x)$$= 2 - \sqrt x( 2 - (1-\sqrt x))$$= 2 - \sqrt x( 1 +\sqrt x)$$= 2 - \sqrt x - x$$=2 - (\sqrt x + x)$$=2-1$$=1$ Seems I've done something wrong :|