anonymous
  • anonymous
solve the problem without calculate x
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1336859839299:dw|
alexwee123
  • alexwee123
root n=1-n square both sides n=(1-n)^2 then solve
anonymous
  • anonymous
give me the value

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

alexwee123
  • alexwee123
|dw:1336860022459:dw| |dw:1336860159440:dw|
anonymous
  • anonymous
please dont calculate x or n...
alexwee123
  • alexwee123
one is extraneous :o^^
anonymous
  • anonymous
just calculate 2x+xsqx
alexwee123
  • alexwee123
oh are these 2 equations linked with each other, like is the value of n for the first equation = n for second? ;o
anonymous
  • anonymous
from 1st eqn\[x = 1 - \sqrt{x}\] replacing 'x' with this value in \[x \sqrt{x}\] we get\[2x + (1 - \sqrt{x})\sqrt{x}\]\[2x + (\sqrt{x} - x)\]\[x + \sqrt{x} = 1, as per eqn 1.\]
alexwee123
  • alexwee123
plug in value of n from first equation then plug it into second
anonymous
  • anonymous
i know but that is wrong way please shashi solution
alexwee123
  • alexwee123
oh okay :o
Callisto
  • Callisto
Don't know if it works... \[x+\sqrt x =1\] \[2x +x\sqrt x\]\[ = 2(1-\sqrt x) + x\sqrt x\]\[ = 2-2\sqrt x + x\sqrt x\]\[ = 2 - \sqrt x( 2- x)\]\[ = 2 - \sqrt x( 2 - (1-\sqrt x))\]\[ = 2 - \sqrt x( 1 +\sqrt x)\]\[ = 2 - \sqrt x - x\]\[=2 - (\sqrt x + x)\]\[=2-1\]\[=1\] Seems I've done something wrong :|

Looking for something else?

Not the answer you are looking for? Search for more explanations.